Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells.

نویسندگان

  • H Kurokawa
  • A E Lenferink
  • J F Simpson
  • P I Pisacane
  • M X Sliwkowski
  • J T Forbes
  • C L Arteaga
چکیده

HER2/neu (erbB-2) overexpression has been causally associated with tamoxifen resistance in human breast cancer cells. Forced expression of HER2 in MCF-7 breast cancer cells resulted in mitogen-activated protein kinase (MAPK) hyperactivity and tamoxifen resistance. Inhibition of HER2 and MAPKs with AG1478 and U0126, respectively, as well as dominant-negative MEK-1/2 constructs restored the inhibitory effect of tamoxifen on estrogen receptor (ER)-mediated transcription and cell proliferation. Both AG1478 and U0126 also restored the tamoxifen-mediated association of ER with nuclear receptor corepressor (N-CoR) in the antiestrogen-resistant MCF-7 cells. Treatment with a combination of tamoxifen and a HER2 kinase inhibitor reduced tumor MAPK activity and markedly prevented growth of HER2-overexpressing MCF-7 xenografts in athymic mice. Thus, blockade of HER2 and MAPK signaling may enhance tamoxifen action and abrogate antiestrogen resistance in human breast cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer.

BACKGROUND Patients receiving adjuvant tamoxifen whose tumors express high levels of both HER2/neu (HER2) and the estrogen receptor (ER) coactivator AIB1 often develop tamoxifen resistance. We used a breast cancer model system with high expression of AIB1 and HER2 to investigate the possible mechanisms underlying this resistance. METHODS MCF-7 breast cancer cells, which express high levels of...

متن کامل

Oncogenic MUC1-C promotes tamoxifen resistance in human breast cancer.

Tamoxifen resistance of estrogen receptor-positive (ER+) breast cancer cells has been linked in part to activation of receptor tyrosine kinases, such as HER2, and the PI3K-AKT pathway. Mucin 1 (MUC1) is aberrantly overexpressed in about 90% of human breast cancers, and the oncogenic MUC1-C subunit is associated with ERα. The present studies using HER2 overexpressing BT-474 breast cancer cells, ...

متن کامل

Inhibition of erbB receptor (HER) tyrosine kinases as a strategy to abrogate antiestrogen resistance in human breast cancer.

It has been proposed that binding of ligand to the estrogen receptor (ER) releases its association with transcriptional corepressors, allowing the ER to recruit coactivators, which possess histone acetylase activity, and induce transcription of gene promoters containing estrogen response elements. It has also been proposed that the antiestrogen tamoxifen recruits transcriptional corepressors to...

متن کامل

Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function.

Not all breast cancers respond to tamoxifen, and many develop resistance despite initial benefit. We used an in vivo model of estrogen receptor (ER)-positive breast cancer (MCF-7 xenografts) to investigate mechanisms of this resistance and develop strategies to circumvent it. Epidermal growth factor receptor (EGFR) and HER2, which were barely detected in control estrogen-treated tumors, increas...

متن کامل

Estrogen Receptor Genomic Function Factor Receptor Signaling with Repression of Classic Tamoxifen Resistance in Breast Tumors Is Driven by Growth

Not all breast cancers respond to tamoxifen, and many develop resistance despite initial benefit. We used an in vivo model of estrogen receptor (ER)–positive breast cancer (MCF-7 xenografts) to investigate mechanisms of this resistance and develop strategies to circumvent it. Epidermal growth factor receptor (EGFR) and HER2, which were barely detected in control estrogen-treated tumors, increas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 60 20  شماره 

صفحات  -

تاریخ انتشار 2000